IMO Shortlist 1970 problem 9
Dodao/la:
arhiva2. travnja 2012. Let

be real numbers. Prove that
%V0
Let $u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n$ be real numbers. Prove that
$$1+ \sum_{i=1}^n (u_i+v_i)^2 \leq \frac 43 \Biggr( 1+ \sum_{i=1}^n u_i^2 \Biggl) \Biggr( 1+ \sum_{i=1}^n v_i^2 \Biggl) .$$
Izvor: Međunarodna matematička olimpijada, shortlist 1970