IMO Shortlist 1970 problem 11


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let P,Q,R be polynomials and let S(x) = P(x^3) + xQ(x^3) + x^2R(x^3) be a polynomial of degree n whose roots x_1,\ldots, x_n are distinct. Construct with the aid of the polynomials P,Q,R a polynomial T of degree n that has the roots x_1^3 , x_2^3 , \ldots, x_n^3.
Source: Međunarodna matematička olimpijada, shortlist 1970