IMO Shortlist 1971 problem 1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Consider a sequence of polynomials P_0(x), P_1(x), P_2(x), \ldots, P_n(x), \ldots, where P_0(x) = 2, P_1(x) = x and for every n \geq 1 the following equality holds:
P_{n+1}(x) + P_{n-1}(x) = xP_n(x).
Prove that there exist three real numbers a, b, c such that for all n \geq 1,
(x^2 - 4)[P_n^2(x) - 4] = [aP_{n+1}(x) + bP_n(x) + cP_{n-1}(x)]^2.
Izvor: Međunarodna matematička olimpijada, shortlist 1971