IMO Shortlist 1971 problem 3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Knowing that the system
x + y + z = 3, x^3 + y^3 + z^3 = 15, x^4 + y^4 + z^4 = 35,
has a real solution x, y, z for which x^2 + y^2 + z^2 < 10, find the value of x^5 + y^5 + z^5 for that solution.
Izvor: Međunarodna matematička olimpijada, shortlist 1971