IMO Shortlist 1972 problem 1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
f and g are real-valued functions defined on the real line. For all x and y, f(x+y)+f(x-y)=2f(x)g(y). f is not identically zero and |f(x)|\le1 for all x. Prove that |g(x)|\le1 for all x.
Izvor: Međunarodna matematička olimpijada, shortlist 1972