IMO Shortlist 1972 problem 3
Dodao/la:
arhiva2. travnja 2012. The least number is

and the greatest number is

among

satisfying

. Prove that
%V0
The least number is $m$ and the greatest number is $M$ among $a_1 ,a_2 ,\ldots,a_n$ satisfying $a_1 +a_2 +...+a_n =0$. Prove that
$$a_1^2 +\cdots +a_n^2 \le-nmM$$
Izvor: Međunarodna matematička olimpijada, shortlist 1972