IMO Shortlist 1973 problem 1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a tetrahedron ABCD be inscribed in a sphere S. Find the locus of points P inside the sphere S for which the equality
\frac{AP}{PA_1}+\frac{BP}{PB_1}+\frac{CP}{PC_1}+\frac{DP}{PD_1}=4
holds, where A_1,B_1, C_1, and D_1 are the intersection points of S with the lines AP,BP,CP, and DP, respectively.
Izvor: Međunarodna matematička olimpijada, shortlist 1973