IMO Shortlist 1973 problem 7
Dodao/la:
arhiva2. travnja 2012. Given a tetrahedron

, let

,

, and

. Prove that there exists a triangle with edges
%V0
Given a tetrahedron $ABCD$, let $x = AB \cdot CD$, $y = AC \cdot BD$, and $z = AD \cdot BC$. Prove that there exists a triangle with edges $x, y, z.$
Izvor: Međunarodna matematička olimpijada, shortlist 1973