IMO Shortlist 1973 problem 9


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let Ox, Oy, Oz be three rays, and G a point inside the trihedron Oxyz. Consider all planes passing through G and cutting Ox, Oy, Oz at points A,B,C, respectively. How is the plane to be placed in order to yield a tetrahedron OABC with minimal perimeter ?
Izvor: Međunarodna matematička olimpijada, shortlist 1973