IMO Shortlist 1973 problem 12


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Consider the two square matrices
A=\begin{bmatrix}+1 &+1 &+1&+1 &+1\\+1 &+1 &+1&-1 &-1\\ +1 &-1&-1 &+1&+1\\ +1 &-1 &-1 &-1 &+1\\ +1 &+1&-1 &+1&-1\end{bmatrix}\quad\text{ and }\quad B=\begin{bmatrix}+1 &+1 &+1&+1 &+1\\+1 &+1 &+1&-1 &-1\\ +1 &+1&-1&+1&-1\\ +1 &-1&-1&+1&+1\\ +1 &-1&+1&-1 &+1\end{bmatrix}

with entries +1 and -1. The following operations will be called elementary:

(1) Changing signs of all numbers in one row;
(2) Changing signs of all numbers in one column;
(3) Interchanging two rows (two rows exchange their positions);
(4) Interchanging two columns.

Prove that the matrix B cannot be obtained from the matrix A using these operations.
Izvor: Međunarodna matematička olimpijada, shortlist 1973