IMO Shortlist 1973 problem 16
Dodao/la:
arhiva2. travnja 2012. Given

, and

, factorize

as a product of

real quadratic polynomials.
%V0
Given $a, \theta \in \mathbb R, m \in \mathbb N$, and $P(x) = x^{2m}- 2|a|^mx^m \cos \theta +a^{2m}$, factorize $P(x)$ as a product of $m$ real quadratic polynomials.
Izvor: Međunarodna matematička olimpijada, shortlist 1973