IMO Shortlist 1974 problem 2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Prove that the squares with sides \frac{1}{1}, \frac{1}{2}, \frac{1}{3},\ldots may be put into the square with side \frac{3}{2} in such a way that no two of them have any interior point in common.
Izvor: Međunarodna matematička olimpijada, shortlist 1974