IMO Shortlist 1974 problem 7
Dodao/la:
arhiva2. travnja 2012. Let
be coprime positive integers for
, and
the least common multiple of
. Prove that the greatest common divisor of
equals the greatest common divisor of
%V0
Let $a_i, b_i$ be coprime positive integers for $i = 1, 2, \ldots , k$, and $m$ the least common multiple of $b_1, \ldots , b_k$. Prove that the greatest common divisor of $a_1 \frac{m}{b_1} , \ldots, a_k \frac{m}{b_k}$ equals the greatest common divisor of $a_1, \ldots , a_k.$
Izvor: Međunarodna matematička olimpijada, shortlist 1974