IMO Shortlist 1974 problem 7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a_i, b_i be coprime positive integers for i = 1, 2, \ldots , k, and m the least common multiple of b_1, \ldots , b_k. Prove that the greatest common divisor of a_1 \frac{m}{b_1} , \ldots, a_k \frac{m}{b_k} equals the greatest common divisor of a_1, \ldots , a_k.
Izvor: Međunarodna matematička olimpijada, shortlist 1974