IMO Shortlist 1974 problem 9


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let x, y, z be real numbers each of whose absolute value is different from \displaystyle \frac{1}{\sqrt 3} such that x + y + z = xyz. Prove that
\frac{3x-x^{3}}{1-3x^{2}}+\frac{3y-y^{3}}{1-3y^{2}}+\frac{3z-z^{3}}{1-3z^{2}}=\frac{3x-x^{3}}{1-3x^{2}}\cdot\frac{3y-y^{3}}{1-3y^{2}}\cdot\frac{3z-z^{3}}{1-3z^{2}}
Izvor: Međunarodna matematička olimpijada, shortlist 1974