IMO Shortlist 1975 problem 4
Dodao/la:
arhiva2. travnja 2012. Let
be a sequence of real numbers such that
and
for
. Prove that
%V0
Let $a_1, a_2, \ldots , a_n, \ldots$ be a sequence of real numbers such that $0 \leq a_n \leq 1$ and $a_n - 2a_{n+1} + a_{n+2} \geq 0$ for $n = 1, 2, 3, \ldots$. Prove that
$$0 \leq (n + 1)(a_n - a_{n+1}) \leq 2 \qquad \text{ for } n = 1, 2, 3, \ldots$$
Izvor: Međunarodna matematička olimpijada, shortlist 1975