IMO Shortlist 1975 problem 9


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let f(x) be a continuous function defined on the closed interval 0 \leq x \leq 1. Let G(f) denote the graph of f(x): G(f) = \{(x, y) \in \mathbb R^2 | 0 \leq x \leq 1, y = f(x) \}. Let G_a(f) denote the graph of the translated function f(x - a) (translated over a distance a), defined by G_a(f) = \{(x, y) \in \mathbb R^2 | a \leq x \leq a + 1, y = f(x - a) \}. Is it possible to find for every a, \  0 < a < 1, a continuous function f(x), defined on 0 \leq x \leq 1, such that f(0) = f(1) = 0 and G(f) and G_a(f) are disjoint point sets ?
Izvor: Međunarodna matematička olimpijada, shortlist 1975