IMO Shortlist 1976 problem 1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABC be a triangle with bisectors AA_1,BB_1, CC_1 (A_1 \in  BC, etc.) and M their common point. Consider the triangles MB_1A, MC_1A,MC_1B,MA_1B,MA_1C,MB_1C, and their inscribed circles. Prove that if four of these six inscribed circles have equal radii, then AB = BC = CA.
Izvor: Međunarodna matematička olimpijada, shortlist 1976