IMO Shortlist 1976 problem 7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let I = (0, 1] be the unit interval of the real line. For a given number a \in (0, 1) we define a map T : I \to I by the formula
if
{{ INVALID LATEX }}

Show that for every interval J \subset I there exists an integer n > 0 such that T^n(J) \cap  J \neq \emptyset.
Izvor: Međunarodna matematička olimpijada, shortlist 1976