IMO Shortlist 1977 problem 11


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let n be an integer greater than 1. Define

x_1 = n, y_1 = 1, x_{i+1} =\left[ \frac{x_i+y_i}{2}\right] , y_{i+1} = \left[ \frac{n}{x_{i+1}}\right], \qquad \text{for }i =...

where [z] denotes the largest integer less than or equal to z. Prove that
\min \{x_1, x_2, \ldots,  x_n \} =[ \sqrt n ]
Izvor: Međunarodna matematička olimpijada, shortlist 1977