IMO Shortlist 1977 problem 13


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let B be a set of k sequences each having n terms equal to 1 or -1. The product of two such sequences (a_1, a_2, \ldots , a_n) and (b_1, b_2, \ldots , b_n) is defined as (a_1b_1, a_2b_2, \ldots , a_nb_n). Prove that there exists a sequence (c_1, c_2, \ldots , c_n) such that the intersection of B and the set containing all sequences from B multiplied by (c_1, c_2, \ldots , c_n) contains at most \frac{k^2}{2^n} sequences.
Izvor: Međunarodna matematička olimpijada, shortlist 1977