IMO Shortlist 1978 problem 1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
The set M = \{1, 2, . . . , 2n\} is partitioned into k nonintersecting subsets M_1,M_2, \dots, M_k, where n \ge k^3 + k. Prove that there exist even numbers 2j_1, 2j_2, \dots, 2j_{k+1} in M that are in one and the same subset M_i (1 \le i \le k) such that the numbers 2j_1 - 1, 2j_2 - 1, \dots, 2j_{k+1} - 1 are also in one and the same subset M_j (1 \le j \le k).
Izvor: Međunarodna matematička olimpijada, shortlist 1978