IMO Shortlist 1978 problem 5


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
For every integer d \geq 1, let M_d be the set of all positive integers that cannot be written as a sum of an arithmetic progression with difference d, having at least two terms and consisting of positive integers. Let A = M_1, B = M_2  \setminus \{2 \}, C = M_3. Prove that every c \in C may be written in a unique way as c = ab with a \in A, b \in B.
Izvor: Međunarodna matematička olimpijada, shortlist 1978