IMO Shortlist 1978 problem 7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
We consider three distinct half-lines Ox, Oy, Oz in a plane. Prove the existence and uniqueness of three points A \in Ox, B \in Oy, C \in Oz such that the perimeters of the triangles OAB,OBC,OCA are all equal to a given number 2p > 0.
Izvor: Međunarodna matematička olimpijada, shortlist 1978