IMO Shortlist 1978 problem 11


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
A function f : I \to \mathbb R, defined on an interval I, is called concave if f(\theta x + (1 - \theta)y) \geq \theta f(x) + (1 - \theta)f(y) for all x, y \in I and 0 \leq \theta \leq 1. Assume that the functions f_1, \ldots , f_n, having all nonnegative values, are concave. Prove that the function (f_1f_2 \cdots f_n)^{1/n} is concave.
Izvor: Međunarodna matematička olimpijada, shortlist 1978