IMO Shortlist 1978 problem 17


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Prove that for any positive integers x, y, z with xy-z^2 = 1 one can find non-negative integers a, b, c, d such that x = a^2 + b^2, y = c^2 + d^2, z = ac + bd.
Set z = (2q)! to deduce that for any prime number p = 4q + 1, p can be represented as the sum of squares of two integers.
Izvor: Međunarodna matematička olimpijada, shortlist 1978