IMO Shortlist 1979 problem 5
Dodao/la:
arhiva2. travnja 2012. Let

be an integer. Find the maximal cardinality of a set

of pairs

of integers,

, with the following property: If

, then

for any
%V0
Let $n \geq 2$ be an integer. Find the maximal cardinality of a set $M$ of pairs $(j, k)$ of integers, $1 \leq j < k \leq n$, with the following property: If $(j, k) \in M$, then $(k,m) \not \in M$ for any $m.$
Izvor: Međunarodna matematička olimpijada, shortlist 1979