IMO Shortlist 1979 problem 11


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Given real numbers x_1, x_2, \dots , x_n  \ (n \geq  2), with x_i  \geq \frac 1n  \ (i = 1, 2, \dots, n) and with x_1^2+x_2^2+\cdots+x_n^2 = 1 , find whether the product P = x_1x_2x_3 \cdots x_n has a greatest and/or least value and if so, give these values.
Izvor: Međunarodna matematička olimpijada, shortlist 1979