IMO Shortlist 1979 problem 21


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let N be the number of integral solutions of the equation
x^2 - y^2 = z^3 - t^3
satisfying the condition 0 \leq x, y, z, t \leq 10^6, and let M be the number of integral solutions of the equation
x^2 - y^2 = z^3 - t^3 + 1
satisfying the condition 0 \leq x, y, z, t \leq 10^6. Prove that N >M.
Izvor: Međunarodna matematička olimpijada, shortlist 1979