IMO Shortlist 1981 problem 2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
A sphere S is tangent to the edges AB,BC,CD,DA of a tetrahedron ABCD at the points E,F,G,H respectively. The points E,F,G,H are the vertices of a square. Prove that if the sphere is tangent to the edge AC, then it is also tangent to the edge BD.
Izvor: Međunarodna matematička olimpijada, shortlist 1981