IMO Shortlist 1981 problem 3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Find the minimum value of
\max(a + b + c, b + c + d, c + d + e, d + e + f, e + f + g)
subject to the constraints

(i) a, b, c, d, e, f, g \geq 0,

(ii)a + b + c + d + e + f + g = 1.
Izvor: Međunarodna matematička olimpijada, shortlist 1981