IMO Shortlist 1981 problem 4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let \{fn\} be the Fibonacci sequence \{1, 1, 2, 3, 5, \dots.\}.

(a) Find all pairs (a, b) of real numbers such that for each n, af_n +bf_{n+1} is a member of the sequence.

(b) Find all pairs (u, v) of positive real numbers such that for each n, uf_n^2 +vf_{n+1}^2 is a member of the sequence.
Izvor: Međunarodna matematička olimpijada, shortlist 1981