IMO Shortlist 1981 problem 6


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let P(z) and Q(z) be complex-variable polynomials, with degree not less than 1. Let
P_k = \{z \in \mathbb C | P(z) = k \}, Q_k = \{ z \in \mathbb C | Q(z) = k \}.
Let also P_0 = Q_0 and P_1 = Q_1. Prove that P(z) \equiv  Q(z).
Izvor: Međunarodna matematička olimpijada, shortlist 1981