IMO Shortlist 1982 problem 4


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Determine all real values of the parameter a for which the equation
16x^4 -ax^3 + (2a + 17)x^2 -ax + 16 = 0
has exactly four distinct real roots that form a geometric progression.
Source: Međunarodna matematička olimpijada, shortlist 1982