IMO Shortlist 1982 problem 19


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let M be the set of real numbers of the form \frac{m+n}{\sqrt{m^2+n^2}}, where m and n are positive integers. Prove that for every pair x \in M, y \in M with x < y, there exists an element z \in M such that x < z < y.
Izvor: Međunarodna matematička olimpijada, shortlist 1982