IMO Shortlist 1982 problem 20


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABCD be a convex quadrilateral and draw regular triangles ABM, CDP, BCN, ADQ, the first two outward and the other two inward. Prove that MN = AC. What can be said about the quadrilateral MNPQ?
Izvor: Međunarodna matematička olimpijada, shortlist 1982