IMO Shortlist 1983 problem 7


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let a be a positive integer and let \{a_n\} be defined by a_0 = 0 and
a_{n+1 }= (a_n + 1)a + (a + 1)a_n + 2 \sqrt{a(a + 1)a_n(a_n + 1)} \qquad (n = 1, 2 ,\dots ).
Show that for each positive integer n, a_n is a positive integer.
Izvor: Međunarodna matematička olimpijada, shortlist 1983