IMO Shortlist 1983 problem 11


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let f : [0, 1] \to \mathbb R be continuous and satisfy: bf(2x) = f(x), \quad 0 \leq x \leq 1/2 f(x) = b+(1-b)f(2x-1), 1/2 \leq x \leq 1 where \displaystyle b = \frac{1+c}{2+c}, c > 0. Show that 0 < f(x)-x < c for every x, 0 < x < 1.
Izvor: Međunarodna matematička olimpijada, shortlist 1983