IMO Shortlist 1983 problem 16


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let F(n) be the set of polynomials P(x) = a_0+a_1x+\cdots+a_nx^n, with a_0, a_1, . . . , a_n \in \mathbb R and 0 \leq a_0 = a_n \leq a_1 = a_{n-1 } \leq \cdots \leq a_{[n/2] }= a_{[(n+1)/2]}. Prove that if f \in F(m) and g \in  F(n), then fg \in  F(m + n).
Izvor: Međunarodna matematička olimpijada, shortlist 1983