IMO Shortlist 1983 problem 22


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let n be a positive integer having at least two different prime factors. Show that there exists a permutation a_1, a_2, \dots , a_n of the integers 1, 2, \dots , n such that
\sum_{k=1}^{n} k \cdot \cos \frac{2 \pi a_k}{n}=0.
Izvor: Međunarodna matematička olimpijada, shortlist 1983