IMO Shortlist 1983 problem 24


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let d_n be the last nonzero digit of the decimal representation of n!. Prove that d_n is aperiodic; that is, there do not exist T and n_0 such that for all n \geq n_0, d_{n+T} = d_n.
Izvor: Međunarodna matematička olimpijada, shortlist 1983