IMO Shortlist 1984 problem 3
Dodao/la:
arhiva2. travnja 2012. Find all positive integers

such that

where

are all positive divisors of the number
%V0
Find all positive integers $n$ such that
$$n=d_6^2+d_7^2-1,$$
where $1 = d_1 < d_2 < \cdots < d_k = n$ are all positive divisors of the number $n.$
Izvor: Međunarodna matematička olimpijada, shortlist 1984