IMO Shortlist 1985 problem 5


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let D be the interior of the circle C and let A \in C. Show that the function f : D \to \mathbb R, f(M)=\frac{|MA|}{|MM'|} where M' = AM \cap C, is strictly convex; i.e., f(P) <\frac{f(M_1)+f(M_2)}{2}, \forall M_1,M_2 \in D, M_1 \neq M_2 where P is the midpoint of the segment M_1M_2.
Izvor: Međunarodna matematička olimpijada, shortlist 1985