IMO Shortlist 1985 problem 10


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Prove that for every point M on the surface of a regular tetrahedron there exists a point M' such that there are at least three different curves on the surface joining M to M' with the smallest possible length among all curves on the surface joining M to M'.
Izvor: Međunarodna matematička olimpijada, shortlist 1985