IMO Shortlist 1986 problem 14


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
The circle inscribed in a triangle ABC touches the sides BC,CA,AB in D,E, F, respectively, and X, Y,Z are the midpoints of EF, FD,DE, respectively. Prove that the centers of the inscribed circle and of the circles around XYZ and ABC are collinear.
Izvor: Međunarodna matematička olimpijada, shortlist 1986