IMO Shortlist 1986 problem 19


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
A tetrahedron ABCD is given such that AD = BC = a; AC = BD = b; AB\cdot CD = c^2. Let f(P) = AP + BP + CP + DP, where P is an arbitrary point in space. Compute the least value of f(P).
Izvor: Međunarodna matematička olimpijada, shortlist 1986