IMO Shortlist 1986 problem 21


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABCD be a tetrahedron having each sum of opposite sides equal to 1. Prove that
r_A + r_B + r_C + r_D \leq \frac{\sqrt 3}{3}
where r_A, r_B, r_C, r_D are the inradii of the faces, equality holding only if ABCD is regular.
Izvor: Međunarodna matematička olimpijada, shortlist 1986