IMO Shortlist 1987 problem 6


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Show that if a, b, c are the lengths of the sides of a triangle and if 2S = a + b + c, then
\frac{a^n}{b+c} + \frac{b^n}{c+a} +\frac{c^n}{a+b} \geq \left(\dfrac 23 \right)^{n-2}S^{n-1} \quad \forall n \in \mathbb N

Proposed by Greece.
Izvor: Međunarodna matematička olimpijada, shortlist 1987