IMO Shortlist 1987 problem 12


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Given a nonequilateral triangle ABC, the vertices listed counterclockwise, find the locus of the centroids of the equilateral triangles A'B'C' (the vertices listed counterclockwise) for which the triples of points A,B', C'; A',B, C'; and A',B', C are collinear.

Proposed by Poland.
Izvor: Međunarodna matematička olimpijada, shortlist 1987