IMO Shortlist 1987 problem 23


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Prove that for every natural number k (k \geq 2) there exists an irrational number r such that for every natural number m,
[r^m] \equiv -1 \pmod k .

Remark. An easier variant: Find r as a root of a polynomial of second degree with integer coefficients.

Proposed by Yugoslavia.
Izvor: Međunarodna matematička olimpijada, shortlist 1987