IMO Shortlist 1988 problem 6


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
In a given tedrahedron ABCD let K and L be the centres of edges AB and CD respectively. Prove that every plane that contains the line KL divides the tedrahedron into two parts of equal volume.
Izvor: Međunarodna matematička olimpijada, shortlist 1988